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1 EXECUTIVE SUMMARY 

Scaling is a major challenge in the operation of geothermal plants. The accumulation of scale can 
reduce the efficiency of the plant, increase maintenance costs and lead to frequent intervention and 
loss of production. One factor that can significantly impact scaling in geothermal plants is the 
composition of the brine used in the plant. Brine is a key component in the heat transfer process in 
geothermal plants, and variations in its composition can affect the solubility of minerals and the 
deposition of scale. However, there is often uncertainty regarding the composition of brine, which can 
be influenced by factors such as well depth, temperature, and geological formations which can impact 
the prediction of scaling risk in the system. In order to support operators in making operational 
decisions to deal with all these unwanted production challenges, including scaling, a workflow is 
required to accurately predict the system behaviour and performance and to provide advise to the 
operators on the optimum settings of the operation considering the uncertainties impacting the 
system.  
 

This report summarizes the optimization workflow to determine the optimum operational controls for 
geothermal assets considering uncertainties in the brine composition. As a case study, a geothermal 
asset with barite precipitation in the heat exchanger was used to demonstrate the workflow. An 
optimization case to maximize the coefficient of performance (COP) of the geothermal doublet was 
conducted to find the optimum outlet temperature of the heat exchanger given an uncertain brine 
composition. Such a workflow can be used to derive optimum decisions for different operational tasks 
such as corrosion management, production-injection optimization and pump control. 

 

The goal of this work was to show the added value of using robust optimization as the decision support 
of geothermal operators. It should ensure that geothermal sector is aware of the importance of 
integrating uncertainties in their modelling (Deliverable 4.3) and robust optimization workflows (as 
shown in this report). In this work we use the optimization toolbox Everest (Everest, 2023). However, 
the workflow we show for robust optimization is not limited to the use of Everest and in principle any 
other robust optimization algorithm can be used. 
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2 INTRODUCTION 

In geothermal operations, mineral precipitation is a common problem that occurs when hot brine is 
extracted from underground reservoirs and brought to the surface for energy production. The hot 
brine typically contains high concentrations of dissolved minerals, which can precipitate out of solution 
due to the changes in the temperature and pressure during its journey through the production and 
injection system. This mineral precipitation can cause several issues, including fouling of heat 
exchangers, blockages in pipelines, and reduced system efficiency. The fouling of heat exchangers is 
one of the most significant issues caused by mineral precipitation in geothermal operations. These 
deposits can reduce the heat transfer efficiency of the heat exchanger, leading to decreased energy 
production and increased operating costs. Furthermore, the deposits can create a barrier that prevents 
further heat transfer, which can cause overheating and damage to the system. To mitigate the problem 
of mineral precipitation, various approaches have been developed, including chemical treatments, 
mechanical cleaning, and thermal treatments. Chemical treatments involve the use of chemical 
inhibitors to prevent mineral precipitation or dissolve existing deposits. Mechanical cleaning involves 
physically removing the deposits from the heat exchanger surface using brushes, high-pressure water, 
or other cleaning methods. Thermal treatments involve heating the heat exchanger to a high 
temperature to dissolve the salt deposits. 

 

Next to the treatments mentioned above, changing the operation and process conditions in the 
geothermal system could have an impact on the initiation or rate of scaling in the system. Such 
decisions in the operation need to be made fast (in operational time-scales) and often the operator 
requires support to make such decisions. Several models and methods were developed to quantify the 
risk of scaling in geothermal plants which can potentially be used to identify optimum control settings 
of the system (Wasch et al. 2019).  

 

This report summarizes the activities related to the decision workflows for geothermal operation 
under uncertainties. The next chapter demonstrates the methodology of robust optimization which 
was applied for the optimization of operational decisions. Afterwards a case study is defined for the 
optimal control of the heat exchanger in order to maximize the thermal energy produced. The models 
developed in Task 4.2 of the H2020 REFLECT project are used for the prediction of mineral precipitation 
under brine composition uncertainties. The results of the case study are shown and analyzed. Since 
the application of such a decision support framework is generic, other case studies in geothermal 
systems which can be applied in this framework are discussed in the final chapter. 
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3 METHODOLOGY 

Robust optimization is a methodology for solving optimization problems that accounts for uncertainty 
in the problem input parameters (Figure 1). One approach to robust optimization is to use Stochastic 
Simplex Gradients (StoSAG), which is an algorithmic framework that combines robust optimization 
with stochastic gradient descent. StoSAG was first introduced by Chen (2008, 2009) as a robust 
optimization approach that could handle uncertain, noisy, and high-dimensional optimization 
problems. StoSAG uses a simplex gradient descent approach to compute the stochastic gradient of the 
objective function (Fonseca et al, 2016). The stochastic gradient is then used to update the solution in 
a way that accounts for the uncertainty in the problem parameters. At each iteration, a random sample 
of the problem parameters is generated, and the objective function is evaluated at the current 
solution. The stochastic gradient of the objective function is then computed using a simplex gradient 
descent approach, and the solution is updated accordingly. StoSAG has been shown to be effective in 
solving various robust optimization problems, including large oil field developments problems. 

 

 
Figure 1. Optimization workflow. 

 
 

In this work we use the optimization toolbox Everest (Everest, 2023). Everest is a decision making tool 
developed for use with multiple realization models/ensemble models to account for uncertainty, but 
Everest can be used both for optimization on single realizations and multiple realizations.  The main 
advantages of our robust optimization tool are: 
- Multi-objective function and constraints 
- Account for uncertainty 

- No need for gradient to be available 

- Flexible (can be coupled to any model easily) 
- Scalable to large number of controls variables: can easily become more complex 

 

In Fig. 2, we present Everest robust optimization framework written in Python. Everest applies the 
StoSAG method described above together with optimizers from Dakota library (Adams et al, 2009). 
Robust optimization is an iterative optimization algorithm which incorporates uncertainties. In our 

workflow, we use the mean of an objective function value (𝑂𝐹̂) - for a single strategy for controls (𝐮) 

- evaluated over an ensemble (with 𝑁 discrete scenarios) of models (𝐜) to describe the known 
uncertainty: 

 

𝑂𝐹̂(𝐮) =
∑ 𝑂𝐹(𝐮, 𝐜𝑖)
𝑁
𝑖=1

𝑁
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subject to 

𝐥𝐨𝐰_𝐛𝐨𝐮𝐧𝐝𝐬 ≤ 𝐮 ≤ 𝐮𝐩𝐩𝐞𝐫_𝐛𝐨𝐮𝐧𝐝𝐬 

 
and 

 

𝑂𝐹̂(𝐮) ≥ 𝑂𝐹̂𝑚𝑖𝑛. 

 

 

 
Figure 2. Everest Robust Optimization Framework.  
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4 CASE STUDY 

4.1 CASE STUDY DESCRIPTION 

The case study to demonstrate the robust optimization framework in this work is Barite precipitation in the heat exchanger 
of a geothermal doublet for direct use application. We assume that the brine composition is uncertain which can lead to 
different scaling index and amount in the heat exchanger at the same process conditions. The base composition of the brine 
is shown in Table 1. The aim of the case study is to find the optimum temperature control scheme in the heat exchanger to 
maximize the coefficient of performance in the geothermal plant.  

Table 1. List of brine elements in the case study 

Elements Concentration [mg/l] 

Na         85000 

K            2200 

Ca          7450 

Mg        1150 

Ba          5.5 

Sr           290 

Fe          175 

Cl           145000 

S(6)       585 

Mn         9.25 

 

The coefficient of performance (COP) is a measure of the efficiency of a heating, cooling, or 
refrigeration systems. It is defined as the ratio of the desired output of the system (heating or cooling 
capacity) to the required input (energy consumption or work done) to achieve that output. For a 
heating system, the COP is defined as the ratio of the heat output (in units of energy, such as Joules or 
BTUs) to the energy input (in units of energy, such as Joules or BTUs) required to produce that heat 
output. A higher COP indicates a more efficient system that produces more heat output for a given 
amount of energy input. We define the COP as: 

 

COP =
QTransfer

WESP
, 

 

where QTransfer is the energy extracted from the system in the heat exchanger 

 

Qtransfer =∑[
1

Rthermal,cell
∗ ∆T]

Cell

 

 

and WESP is the power consumed by the Electrical Submersible Pump (ESP), given by 

 

WESP =
Qvolumetric
3600

(ρbrine ∗ gearth ∗ hhydro.head + PHEX, in) 

 

with 
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Rtherm =
1

2 ∗ π ∗ Lcell
∗ (

1

(rI.D. −t) ∗ hconv, in
+
ln [

rI.D. 
rI.D. − t

]

kbarite
+
ln [
rO.D.
rI.D.

]

kstain.steel
+

1

rO.D. ∗ hconv, out
) 

 

and 

 

hconv =
kbarite

2 ∗ (Rpipe − tprecip. layer)
∗

(

 

f
8
(ReD − 1000)Pr

1 + 12.7 (
f
8)
0.5

(Pr
2
3−1)

)

  

 

Note; the COP depends on the temperature and pressure in the heat exchanger, and on the volumetric 
flow rate since these parameters will impact the scaling behaviour.  

 

As the forward model we use a multiphase flow solver coupled with PHREEQC (Figure 3) developed in 
WP4 (Poort et al, 2022). In this model, the mineral precipitation amount (in mol/L) is given by 
PHREEQC, following from flow properties calculated by the Drift-Flux model (multiphase flow). A 
precipitation model was created, which converts precipitation quantities into a deposition profile 
along the pipe wall of the heat exchanger. The heat exchanger pipe is divided into 25 cells of equal 
length. The deposition profile affects following parameters: Surface roughness, which affects the 
friction factor, Flow velocity, Pressure drop and Heat transfer to secondary flow. This process is 
iterated over a time period (now 25 days, up to 100 days) in order to capture effects over time. The 
details of the model can be found in Poort et al 2022 and Reflect Deliverable D4.3.  

 

 
Figure 3. Forward model framework or the coupled flow and chemistry. Image adapted from Twerda 2014 
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4.2 OPTIMIZATION PROBLEM 

Due mineral precipitation which decreases the heat exchanger pipe radius, eventually the heat 
production rate over time will decrease. Barite precipitation in the heat exchanger can be controlled 
by controlling the heat extraction at the heat exchanger which in turn will decrease thermal energy 
produced. However, by keeping the heat extraction from the heat exchanger high, the precipitation in 
the heat exchanger will lead to a higher resistance in the system and higher power is required to 
transport the production. In addition, uncertainty in the geochemical composition and gas 
concentrations in the produced water makes the precipitation prediction/control a challenge. The goal 
is to optimize the heat exchanger outlet temperature to maximize energy flow rate produced while 
minimizing the barite precipitation and power consumption of the pumps. For the case study described 
above, we have defined our objective function as 

 

𝐮𝑚𝑎𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝐶𝑂𝑃̂(𝐮) 
 

subject to  

𝑇𝑡
𝑜𝑢𝑡 < 𝑇𝑡

𝑖𝑛, 
 

 

where 𝑢 are the control variables and the expected COP is  

                                  

𝐶𝑂𝑃̂(𝐮) =
∑ 𝐶𝑂𝑃(𝐮, 𝐜𝑖)
𝑁
𝑖=1

𝑁
 

  
and 𝑤 is the uncertainty parameters. 𝐶𝑂𝑃(𝑢,𝑤𝑖) is the total heat produced: 

 

𝐶𝑂𝑃(𝐮, 𝐜𝑖) =
∫ 𝑞ℎ𝑒𝑎𝑡(𝐮, 𝐜𝑖 , 𝑡)𝑑𝑡
𝑡𝑝
0

∫ WESP(𝐮, 𝐜𝑖 , 𝑡)𝑑𝑡
𝑡𝑝
0

. 

 

 

 

In this case, the brine contains Barite. The control is the heat exchanger outlet temperature, 𝐮 =
[𝑇0, … , 𝑇𝑡] , at each time t, and the uncertainty is the amount of barite in the brine. 𝒄𝒊  is the 
concentration of salt in the brine for each realization 𝑖.  
 

4.3 ANALYSIS 

In Figure 4, we show the COP versus time and outlet temperature for two Ba concentrations of 2.25 
and 5.5 mg/L in the brine. We can see that when the outlet temperature goes towards the inlet 
temperature value (100.15°C), COP tends to null. Since as temperature difference goes towards zero, 
no heat is produced and COP is zero as well. When the outlet temperature drops in this case, barite 
precipitates, creating an insulation barrier, increasing the power consumption of the pump and 
decreasing the COP over time. In this case, the optimum is around 30°C during the whole period 

simulated (100 days). For the case with barite concentration of 2.25, the optimum solution is 𝐮 =
[27.0, 27.4, 27.7, 28], with a 𝐶𝑂𝑃 = 21.0132 at 100 days. For the case with barite concentration 

of 5.5, the optimum solution is 𝐮 = [27.3, 27.9, 27.9, 27.9], with a  𝐶𝑂𝑃 = 19.0120 at 100 days. 
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In Figure 5 we show the amount of barite precipitated in the heat exchanger. As expected, we 
can see that, higher the initial amount of barite, higher the precipitated volume over time.  

 

 
(a) 

 
(b) 

Figure 4. COP vs. outlet temperature at different times for a barite concentration of 2.25 (a) and 5.5 (b), with an inlet 

temperature of 100.15C. Optimum outlet temperature is around 30°C; optimum control is 𝐮 =
[𝟐𝟕. 𝟎, 𝟐𝟕. 𝟒, 𝟐𝟕. 𝟕, 𝟐𝟖] for (a) and 𝐮 = [𝟐𝟕. 𝟑, 𝟐𝟕. 𝟗, 𝟐𝟕. 𝟗, 𝟐𝟕. 𝟗] for (b). 
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(a) 

 
(b) 
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(c) 

Figure 5. Volume precipitated of barite in the heat exchanger over time for different outlet temperatures for different initial 
concentration of barite in the brine: 0 (a), 2.25 (b), 5.5 (c).  

 

When we added uncertainty to the barite concentration around ±3% (Figure 6) and we compute the 
average COP using the equation described in the optimization subsection for robust optimization. Here 

we have also an optimum around 28°C for all times. In this case, 𝐮 = [27.0, 27.9, 27.9, 27.9], with 

a  𝐶𝑂𝑃̂ = 20.6584 at 100 days. In Figure 7, the average volume of barite precipitated is shown. 
In Table 1, we present a summary of all experiments done. 

 
 Table 1. Summary of optimization experiments, in the case of no Ba the optimum was found at the lowest temperature at 
the outlet of the heat exchanger.   

𝐵𝑎 0* 2.25 5.5  𝐵𝑎̂ 

𝐮 10 [27.0, 27.4, 27.7, 28] [27.3, 27.9, 27.9, 27.9] [27.0, 27.9, 27.9, 27.9] 

𝐶𝑂𝑃 at 100 days 24.1 21.0132 19.0120 20.6584 ( 𝐶𝑂𝑃̂) 

* is a deterministic case 
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Figure 6. Average COP vs. outlet temperature at different times for a barite concentration between [0-5.5] and inlet 

temperature of 100.15C a time 100 days. We have used 3 realizations, c=[0,2.25,5.5]. In this case, 𝐮 =
[𝟐𝟕. 𝟎, 𝟐𝟕. 𝟗, 𝟐𝟕. 𝟗, 𝟐𝟕. 𝟗]. 

 
Figure 7. Average barite precipitated volume vs. outlet temperature at different times for a barite concentration between [0-
5.5] and inlet temperature of 100.15C a time 100 days. We have used 3 realizations, c=[0,2.25,5.5].  

4.4 OPTIMUM RANGE OF CONTROLS 
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Another point to be looked at is to find not one optimum, but an optimum range of temperatures 
where the system would lead to an acceptable COP. We can formulate this problem as a weighted 
multi-objective optimization problem where we try to optimize the COP  of the lower and upper outlet 
temperatures (T = [Tl,  T𝐮]) of the range while also optimizing the temperature difference between 
upper and lower limit, i.e., the size of the range.: 

 

𝐓𝑚𝑎𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑤1( 𝐶𝑂𝑃̂(𝑇𝑙) +  𝐶𝑂𝑃̂(𝑇𝑢)) + 𝑤2
𝑇𝑢 − 𝑇𝑙
𝑇𝑖𝑛

) 

 
subject to 

𝑇𝑢 > 𝑇𝑙 , 

 

𝑇𝑢 < 𝑇𝑖𝑛, 
and 

𝑇𝑙 > 𝑇𝑚𝑖𝑛. 

 

 

The weights must sum to 1, 𝑤1 +𝑤2 = 1 and the objective functions must be scaled properly and 

dimensionless (i.e.,  𝐶𝑂𝑃̂ here is dimensionless). Note, the third objective function serves as a penalty 
function that penalize the objective function as 𝑇𝑙 → 𝑇𝑢, there is, the range bounds collapses. 𝑇𝑚𝑖𝑛 
should be at least above freezing temperature of brine. Note, this formulation is only valid for convex 
optimization problems.  

 

We run two optimization experiments with  𝐜 = 5.5: (1) optimize only an optimum value vs. (2) an 
optimum range. In this case, for the experiment (1), the optimum control Tout = 28.1953, which gives 
a COP of 18.9380. For the experiment (2),  𝐮 = [18.0349, 35.4192], with a  𝐶𝑂𝑃 =
[18.2652, 18.6486] , respectively, at 100 days (Figure 8). For experiment (2) we used 𝐰 = [0.7,0.3] 

and normalized the  𝐶𝑂𝑃̂  by dividing by the COP by a constant equal 23.  

 

The penalty function may be worked out such that its weight decreases as the range size increases, or 
use a barrier function, so that the range does not collapse or goes towards the maximum allowed range 
(𝑇𝑖𝑛 − 𝑇𝑚𝑖𝑛).  
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Figure 8. COP vs. outlet temperature at different times for a barite concentration of 5.5 with an acceptable range for outlet 
temperature between 18 and 35 C to have a COP above 18.  In this case, the optimum range for the outlet temperature is 

between 18 and 35 C (𝐮 = [𝟏𝟖. 𝟎𝟑𝟒𝟗, 𝟑𝟓. 𝟒𝟏𝟗𝟐]). 
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5 FINAL REMARKS 

The numerical models used to describe the geothermal fluid and heat transfer in the geothermal plant 
need to include brine composition uncertainties. Model-based optimization workflows for design and 
operation geothermal systems would be incomplete if uncertainty is not accounted within the 
optimization process. In this work, we have developed a workflow for operational decision support 
under uncertainties using a robust optimization algorithm. The objective of the workflow is to 
determine the optimum production decisions to obtain the best performance protocols for geothermal 
system operation. Robust optimization is an optimization process that incorporates uncertainty.  

 

The developed workflow was demonstrated in a case study of optimum temperature control of the 
geothermal plant, downstream of the heat exchanger, which suffers from barite precipitation. The 
optimum operation point that gives the highest COP is the outlet temperature that gives the highest 
temperature drop across the heat exchanger, while maintaining the temperature of the system high 
enough to avoid mineral precipitation (in this case barite). We have run several deterministic and 
robust optimization experiments to show how we can use our optimization workflow to find the 
optimum operational range of temperatures. The results demonstrate that a single value for the 
control of temperature in the heat exchangers will not provide the optimum for the plant and the 
mean of the optimum values for each realization will provide an improved strategy for the plant.  

 

5.1 FUTURE WORK 

The generic workflow to account for uncertainties in the modelling and optimization has several 
applications for the design and operation of geothermal plants. As an example, in case of other 
precipitations were several parameters will impact the scaling in different locations, as an example 
calcite, to avoid scaling, we have to control the pressure and temperature across the plant. In addition, 
other parameters can act as inhibitors such as CO2 dosing and pH control. In this scenario, we need to 
optimize the plant by controlling pressure, CO2 dosing and inhibitor dosage (e.g. HCl) and we have as 

control variables  𝐮 = [𝑝, 𝐶𝑂2,𝐻𝐶𝑙] , at each time t, and the uncertainty is the amount of minerals 

and gas in the brine, w = [c, g].  
1In addition, the workflow can be used to control the injection and production rates to account for 
other production issues such as corrosion, erosion and pump failures. For the design aspects, the 
efficiency and design of ion exchange filters under brine composition can also be estimated using the 
current workflow. 
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